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SUMMARY

An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environ-

ment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted

in the analysis to see the effect of inlet configuration on flow regime transitions.

Comparison of the prediction with the existing experimental data shows good agreement, though

more work is required to better define some physical parameters.

The present analysis clarifies much of the physics involved in this problem and can be applied to

other configurations.

1. INTRODUCTION

Currently, a single-phase fluid loop is used in the space shuttle to transport waste heat to radiators.

For the much higher power levels_ as high as multimegawatts, anticipated for future spacecraft, this type

of system becomes prohibitively large and heavy. Due to this shortcoming_ the use of two-phase fluid

loops has been suggested as an alternative for the removal and transport of high waste-heat loads to

space radiators (ref. 1). The design and analysis of such loops, however, requires an understanding of

flow regimes, pressure drops, and heat transfer in a microgravity environment. There has been a great
deal of work done on the two-phase flow problems under normal gravity during the last four decades.

However, there has been little work on two-phase flow phenomena in microgravity. Reasons for the lack
of studies in this area include the complex nature of multiphase flow and the great difficulty in

performing experiments in a reduced gravity environment.

It can easily be seen from experiments that gravity dominantly affects the flow pattern of two-phase

flow in a pipe under normal gravity (ref. 2). As the level of gravity is reduced its dominant role is

diminished and, as a result, the behavior of two-phase flow in microgravity differs from that at 1-g. It is
also to be noted that the entrance effect on the two-phase flow behavior is negligible under normal

gravity while the entrance configuration could have pronounced effects on the flow pattern in the absence

of gravity, because the presence of gravity tends to stabilize the flow and minimize the entrance effects.

Since a purely analytical treatment of two-phase flow is impractical, in the present analysis, through

scaling analysis based on the dominant physical mechanisms, analytical models are developed which can

predict the gas-liquid two-phase flow pattern in a pipe in microgravity. Due to the importance of inlet

geometry, a simple inlet configuration is adopted and the resulting flow pattern from such an inlet

geometry is studied considering the evolution of the inlet region flow pattern in the downstream region.
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2. BASICEQUATIONS

For the inlet configuration considered, illustrated in figure 1, gas is introduced through

a nozzle of diameter dN located at the center of a pipe of diameter D. The gas flow emerging from the

nozzle and the liquid flow in the annular space around it are essentially parallel. The volumetric flow

rates of the gas and liquid are Qg and Of, respectively.

Depending on the value of Of, the gas flow will leave the nozzle as dispersed small or large bubbles
for low Q_, and as a jet-like flow for high Q_. The resulting flow pattern will be determined by theg
downstream interaction between the liquid fl_w and the bubble-like or jet-like gas flow. Bubble-like gas

flow will be examined first; consideration will then be given to jet-like gas flow. For bubble-like flows the

gas may appear as well-spaced small or large bubbles or it may appear as multiple bubbles; the size of the

bubbles depends upon physical mechanisms related to the bubble formation. In normal gravity, the

motion of the bubbles depends to a large extent on the orientation of the pipe with respect to gravity. In

microgravity, however, not only is there no prevailing direction of gravity, but the magnitude of gravity

is negligible. Thus orientation of the pipe has no meaning in microgravity.

The related forces in the formation of a bubble can be divided into two groups: the detaching forces

and the attaching forces (fig. 2). Detaching forces include the buoyancy force due to density difference,

F B and the gas momentum flux (or kinetic force) coming out of the nozzle, F K. Attaching forces include

the surface tension force at the nozzle exit, F a and the inertial drag related to the bubble motion in the

liquid, F I. Another major force is the drag force due to the viscous liquid flow, F D. This force can be
either an attaching or detaching force depending on the relative velocity between the liquid flow and the
bubble center.

In this analysis, the bubble is assumed to be spherical in shape throughout its formation and the

effect of previously formed bubbles is assumed negligible. In addition, both the gas and liquid are

assumed to be free of contaminants. Based on the above assumptions, each force can be written as
follows:

Buoyancy force, F B =

Momentum flux, F K = pg -- pg

-_ dN

_r D 3 (pf _ pg)g = (pf _ pg)Vbg

2 2
Qg Qg

(la)

Ob)

Surface tension force, F a = aTrdNf(_ ) (lc)

_ d [( (ld)

1

Liquid viscous drag, F D --CD. _ pfU_ffAeff (le)

where D b and rb are the bubble diameter and radius, A N is a nozzle cross section area, pg and pf
are the densities of gas and liquid, a is the surface tension coefficient, f(fo) is a function of the inclined
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angle of the interfaceat the nozzle,V b is the bubble volume, C M is the added mass coefficient,drb/dt

isvelocityofthe fluidspherecenter,and C D isthe drag coefficientgiven as a functionofReynolds

number based on bubble diameter,ReB -- PfUeffDb/_f,where /Jfisthe liquidviscosity.Ueff and Aeff
are effectivevelocitybetween phases and effectiveprojectionarea ofthe bubble,respectively.

Except when D b £ d N or when D b _ D, the bubble center motion can be described from the force

balance equation by Newton's second law of motion, and the bubble size can be determined by a proper
force balance at the instant of detachment. Balancing the related forces in equation (1), the force balance

equation is

FB + FK + FD = Fa + FI (2a)

or

2

Qg + CD " 1 pfU_ffAeff

-- ardNf(p ) + _-_ pgVb + CMPfVb) drbI

(2b)

The buoyancy force is negligible in microgravity, while under normal gravity it could be either an attach-

ing or detaching force depending on the system alignment with respect to gravity. The reason for retain-

ing buoyancy force term in equation (2) is to properly delineate the condition under which its effect is

negligible. Considering

V b = Qgt (3)

and

drb Qg
-- = U b -- (4)

dt 4rr2b

the inertial drag term of equation (2b) can be written as

2

1 Qg

Pelf_rDq

(5)

where

(6)



Bubbles during growth are connected to the nozzleby a small neck. The moving directionofthe

bubble centerisparallelto the flow directionin the gas-liquidcoflowingsystem and the neck of a bubble

isalways alignedwith the flow direction.Thus the inclinedangle _ isusuallyassumed zeroat the

instantof detachment and the functionofinclinedangle f(_) becomes

f(_) = 1 (7)

In a cross-flowing system such as gas injection into flowing liquid through holes located around the peri-

phery of the wall, the bubble center moves during expansion normal to as well as parallel to the liquid
flow direction. Considering the fact that the surface tension force always acts in the normal direction of

the cutting plane, the actual contact angle has to be recalculated and thus the function of the inclined

angle has components in both the parallel and normal directions. But in the case of high velocity liquid

flow the parallel direction forces become dominant and the bubble size could be determined from the

coflowing equation, unless the gas velocity (or gas flow rate) is very high. For details, see Kim (ref. 3).

Substituting equations (5) and (7) into equation (2b), we have

2

Qg + CD " 1 pfU2effAeff

= a_-d N +

2
1 Qg

Peff rD---_b

(8)

2.1 Conditions Under Which Buoyancy can be Neglected

In normal gravity, the buoyancy force is the major detaching force for low liquid velocity cases.
When the liquid velocity is high, the liquid drag force becomes more important and it, as well as the

buoyancy force, usually control the bubble detachment. In microgravity, as the buoyancy force becomes

negligible either the liquid drag force or the gas momentum flux plays a dominant role in bubble
detachment. By microgravity it is thus meant herein that the following conditions, from equation (8), for

liquid drag force dominant

pf- pg)Vbg

_1 CDPf U_ff Aeff
2

< 1 (9a)

and for gas kinetic force dominant
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Pf- pg)Vbg << 1
2

Qg
Pg

(9b)

are present. Whether eitherof theseconditionsappliescan be made clearin the courseofanalysis.

Neglectingthe buoyancy forceterm, equation (8)iswrittenas

2 2

Qg + CD " 1 2 1 Qg

Pg _ _ PfUeffAeff = aTrdN -{- ] Peff XDb

(10)

3.APPROACH

The approach to determining the flow regime in microgravity is to ask a series of questions. The
answers to these questions will determine the dominant attaching and detaching forces, the flow regime in

the area of the nozzle, and what changes in flow regime will occur downstream of the nozzle.

The firstquestion: what are the relativemagnitudes of the attachingand detachingforces? The first

part ofthe answer to thisquestionwillcome in chapter4;therethree _physicalconditions"(low gas flow

rate,intermediategas flow rate,and high gas flow rate)willbe definedbased on the ratioof momentum

fluxto surfacetensionforces.For intermediategas flow rates,a comparison of inertialdrag to viscous

drag isalsonecessaryto determine the dominant attachingand detachingforces.This comparison is

made in section7.4.

What forcesare equated to determine the bubble departuresize? What parameter determinesthe

bubble departuresize? These are the questionsthat willbe tackledin section5.1 (forlow gas flow rate)

and sections6.1 and 7.1 (forintermediategas flowrate).The bubble departuresizewilldetermine a flow

regime in the vicinityof the nozzle. (For high gas flow ratea jetor jet-likeflow,as opposed to discrete

bubbles,willoccur. Thereforea differentapproach,a comparison of gas and liquidvelocities,willbe used

in section8.1to characterizethe jetor jet-likeflow.)

Do the bubbles coalescenear the nozzle? In the absence ofbubble breakup, the presenceof bubble

coalescenceisassumed to leavedispersedflowwith very small bubbles unchanged, to change dispersed

flow with largerbubbles to slugflow,and to change slugflow to annular flow. The prescienceor absence

of bubble coalescencewillbe addressedin sections5.2,6.2,and 7.2. (There isno correspondingsection

forhigh gas flow rateconditions.)

Does bubble or jet breakup occur downstream of the nozzle? The possibility of breakup due to tur-
bulent fluctuations will be raised in sections 5.3, 6.3, 7.3, and 8.3. Turbulent fluctuations can act to

place an upper limit on the bubble size.

For high gas flow rate physical condition with gas velocities much higher than liquid velocities, jet

breakup due to Kelvin-Helmholtz instability can occur; this is investigated in section 8.2.



4. DETERMINATION OF PHYSICAL CONDITIONS

4.1 Low Gas Flow Rate

Kumar and Kuloor (ref. 4) studied bubble formation for a submerged nozzle in a stationary liquid

column under normal gravity. They pointed out that for very small gas flow rates, surface tension is the

dominant force resisting bubble detachment by buoyancy. As the gas flow rates are increased, surface

tension becomes less important and the inertial drag and liquid viscous drag become the important forces

resisting bubble detachment. In microgravity, when the gas flow rate is small such that its momentum
flux is not enough to overcome surface tension, i.e., from equation (10) under the condition

2

pg mQg << a_(1N
AN

(11)

the only bubble detaching force is liquid drag and the resisting force against the liquid drag is the surface
tension force. If the liquid drag is not strong enough to overcome surface tension, there would be no

other detaching force and the bubble would grow as large as the tube diameter.

4.2 Intermediate Gas Flow Rate

When the gas volumetric flow rate increases such that the momentum flux or kinetic force of the gas

leaving the nozzle is enough to overcome the surface tension force at the nozzle, but less than that

resulting in a jet-like flow, either the liquid viscous drag or inertial drag against the gas momentum flux

becomes important in the formation of a bubble. The physical condition for this statement can be

written as

2

Qg < a_rdN
Pg _N -

(12)

It is assumed for the time being that the average gas velocity coming out of the nozzle is larger than

the liquid superficial velocity, i.e.,

Qg > Qf (13a)

A N A

or

Qf AN

Qg A

__ m < 1 (13b)

The.reason for this restriction, (equation (13)), is that if the liquid flow is large enough to reverse the

inequality, the bubble is subject to breakup even in the formation stage due to the high liquid turbulence.



(It doesnot imply that the bubble velocity after detachment is larger than the liquid velocity.) The

necessity of this assumption will be addressed later, in Section 7.4.

4.3 High Gas Flow Rate

When the gas flow rate is very high, the gas inertia is greater than surface tension.
sented as

This is repre-

2

Qg > a_rdN (14)

5.1 Force Balance and Departure Size

Under the applicable condition (eq. (11)), we may balance the liquid drag with the surface tension

force term in equation (10) as

1 2 (15)
CD _ PfUeffAeff ----a_rdN

For low gas flow rate and AN/A << 1, we may put

Qf Qf
Ueff = Uf - ,_

All - ___] A

(16)

Expressing the effective area of bubble, Aeff , as

: (17)

the force balance in equation (15) gives

D b -- lj cDf2 (18)



Itcan be seenfrom equation (18)that forvery small gas flow ratethe bubble sizeincreaseswith

increasinginterfacialtension,but ismore influencedby the liquidflow rate. The higherthe superficial

liquidvelocity,the smallerthe bubble size,as isexpected. Also note that the bubble sizedepends on the

nozzlediameter.

Dividing equation (18) by pipe diameter, D

Db 8 a

pf D

(19)

Since(dN/D) 2 << 1,Db/D < 1 when

st1, <1
(20)

and Db/D > 1 when

(21)

Under the condition from equation (21), the gas leaves the nozzle as a big bubble, its diameter

comparable to the pipe diameter. Physically it is not possible for the bubble diameter to be larger than

the pipe diameter as is implied by Db/D _> 1, but for sufficiently low liquid flow rate the bubble may
elongate in the direction of flow with its length larger than the pipe diameter. As the big bubbles that

can occur at low liquid flow rate are not subject to breakup into smaller ones by high liquid turbulent

fluctuations, slug flow would result. The length of bubbles in this case may be the tube diameter or

many times larger than that depending on the liquid flow rate. Based on this argument the criterion for

bubble-slug flow transition is set as

=1
(22a)

or in terms of Weber number based on liquid superficial velocity and pipe diameter
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,2f /wol,2 "2_1 (22b)

It is seen from the above relation how the nozzle diameter affects the transition criterion. It is expected

that at the value of liquid volumetric rate Qf which is slightly larger than the value given by the crite-

rion from equation (22), the flow regime may not be a dispersed flow regime characterized by small, dis-
crete bubbles but instead may be a simple bubble flow characterized by the presence of both small and

large bubbles. The demarcation between the two is not clear. It is thus preferred to designate a dis-

persed flow regime for the situation of Db/D < 1.

5.1a An Alternative Formulation for Departure Size

As is indicated by equation (19), for low liquid flow rate the bubble may grow much larger than the

nozzle diameter. Depending on the growing bubble size, the effective velocity Uef f over the bubble may

increase and differ appreciably from the simple liquid superficial velocity given in equation (16), which in

turn may prompt the earlier detachment of bubble with a reduced size, especially in a small diameter

pipe. To consider this, instead of the liquid superficial velocity used in equation (16), the effective

velocity could be taken to be

Vef f =

Qf

(23)

With the above effective velocity, from the force balance in equation (15) for (dN/D) 2 << 1, the relative

bubble size is given as

D b
__= i+
D

°

8 G dN

D

1/2

dN

D

(24)

From the above relation, it can be shown that



Db 8 a dN
_<1 for <<1

pf _-_JD

and

Db 8 a dN
--*1 for >Pl

D

Comparison shows that the condition from equation (25) for the presence of dispersed flow is almost the

same as the condition from equation (20), but the condition from equation (26) is rather different from

the condition from equation (21) for the presence of slug flow. According to the condition set forth in

equation (21), the bubble can grow as large as pipe diameter at some low value of liquid volumetric flow

rate while this is not possible under the condition set forth in equation (26), unless the liquid volumetric

flow rate is vanishingly small. The condition from equation (26), in addition, cannot predict explicitly

the dispersed-slug flow transition criterion. Until an experiment makes it clear which of the two is better,
the transition criterion from equation (22) will be used.

5.2 Bubble Coalescence in the Nozzle Region

Some criteria for the bubble coalescence were given for stationary bubble formation system (refs. 5

to 7). In the present situation, the bubble formed at the nozzle exit is carried downstream by the liquid
flow. Thus if we neglect the slip between the liquid and bubble, the gas bubble would have the same

velocity as the l?cal liquid velocity. By comparing the time for the first bubble to move one bubble

diameter, Db/Ub, with the next bubble formation time, Vb/Qg , the condition for which bubbles will

merge is

Db V b

t

U b Qg

(27)

If

, Qf
V b = Uf = __

A
(28)

which means that the bubble moves with the average, or superficial, liquid velocity, equation (27)
becomes

10



(29)

If Qg/Qf < 2/3 (consistent with low gas flow rate), since Db/D _< 1, equation (29) is never satisfied

and no bubble coalescence occurs.

5.3 Breakup Due to Liquid Turbulence

The splitting of bubbles or drops in turbulent flow occurs due to the interaction of surface tension,

viscous, and inertia forces. When the bubble or drop size is much smaller than the Kolmogorov micro-

scale, defined as the length scale of the flow where viscous forces become influential, the viscous force

plays a dominant role in breakup of bubbles and drops. But when the Reynolds number of the external

flow field is large, as is the case in most practical applications, the spatial dimensions of such local

regions are very small compared with the bubble or drop size. The determining factor for bubble or drop

breakup becomes the dynamic pressure caused by velocity changes over distances on the order of the bub-

ble or drop diameter. When the viscosity of the dispersed phase is much larger than that of the continu-

ous phase, the effect of flows inside the drop or bubble becomes important.

The dynamic pressure due to turbulent fluctuation is

1 ,2 (30)
F t : _ pfU

where U' is the velocity of most rapid eddy which can be, according to Levich (ref. 8), approximated

as a frictional velocity,

(31)

where f in this equation is the friction coefficient predicted by the Blasius equation

[ pfUfD]-°'2
f = 0.046 [,_)

(32)

The capillary pressure due to interracial tension for a bubble of diameter D b is

Fa = __2a= __4a (33)
rb Db

The breakup of the bubble is expected to occur when the dynamic pressure due to turbulent fluctuations

exceeds the capillary pressure. Thus from equations (30) to (33), this condition is given as

11



f pfU_D D b (34)
>1

16 a D

Substituting equation (19) into equation (34), keeping in mind that

turbulent breakup becomes:

15,100) (. D )

<< 1, the condition for

(35)

where Re is the Reynolds number based on average liquid velocity and tube diameter, Re = pfUfD/pf.

Since Re > 1 and dN/D < 1, this condition will not be met for any reasonable values of Weber number.

The possibility, for this physical condition, of breakup of bubbles due to turbulent fluctuations is thus
dismissed.

VISCOUS DRAG CASE

Under the condition of equation (12), the liquid viscous drag opposes gas bubble detachment and is

thus negative. Equation (10) then becomes

2 2
ct O

_g _ a_dN_{_ CD . 1 1 _g
Pg "_N -- 2 pf U_ffAeff + _ Peff _.D--'_b

(36)

Since the inertial drag becomes more important for higher gas flow rate, the balance of gas momentum

flux with liquid viscous drag is considered first. (The limits for this case are considered in section 7.4.)

6.1 Force Balance and Departure Size

Under the condition that the gas momentum flux balances liquid viscous drag, from equation (36)

2

Qg _ CD pf U_ffAeff
Pg A N 2

(37)

Since
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Ueff = Ub - Uf

= Q_! '
(38)

and Aef f = (_/4)D2b, from equations (37) and (38),

= __ dN1 - 4
Db --_ pg) " Qg

(39)

or

Db
_._ = __ Pg} ___ 1-4 _gg

This is a quadratic equation for the relative bubble size, Db/D. The solution is expressed as

Db = 1 /_I+4A2qB q

D 2AqBq

(40)

(41)

where

C D Pf/1/2 dNAq---- _ Pg) -_

(42)

Bq = 4 __qf (43)
qg

the parametric value of 4A 2 Bq, the relative bubble size can be given asFrom equation (41), according to
follows:

q CD Pf Qf AN(i) 4A Bq >> 1 or >> 1 (44)
2 .Og Qg A
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Db

D

1 1 Q]'_ (45)

(ii) 4A2q Bq

CD Pf Qf AN= I or = I (46)
2 pg Qg A

Db= _-- 1 q_f (47)D 2

CD Pf Qf AN
4A2Bqq << 1 or << 1 (48)(iii)

2 pg Qg A

(49)

Consider different values for 4A2q Bq. From equation (13), (Qf/Qg)(AN/A) < 1; considering slow bubble

formation, for 1 < Re B _ 10, C D ranges between 2.64 < C D <_ 18.3 (ref. 9); and for gas-liquid two-phase

flow pf/pg :>> 1. Thus 4A2qSq = (CD/2)(pf/pg)(Qf/Qg)(AN/A) > 1 (or >> 1).

The bubble size therefore can be represented as

Db
= K a q[__2

(50)
D ,4Uf

where K a is a constant. From equations (45) and (47), 0.2 < K a _< 0.5, depending on the value of

4A2q Bq. For 4A2q Bq > 1, K a may be approximated at 0.4 without appreciable error for gas-liquid

systems, which are of concern here. Equation (50) thus becomes

ob--0.4
D

(51)

Note that in the present case the nozzle diameter has no relevance in determining bubble size. For

14



(52)> 0.4

Db/D < 1 and the flow is expected to be a dispersed flow unless bubble coalescence occurs. For

---0.4
(53)

Db/D >_ 1 and slug flow is expected unless bubble coalescence occurs.

6.2 Bubble Coalescence in the Nozzle Region

Substituting the expression for Db/D from equation (51) into equation (29), it is found that equa-

tion (29) is identically satisfied. This indicates that bubble coalescence always occurs in both dispersed

and slug flow regimes in this situation. As a result of bubble coalescence, dispersed flow with moderately

larger bubbles may change into slug flow and slug flow with long bubbles may change into annular flow,

if there is no breakup due to high liquid turbulence.

6.3 Breakup Due to Liquid Turbulence

Substituting equations (32) and (51) into equation (34) gives the bubble breakup condition

We > 870 Q_ Re 1/5

(54)

Under the condition of equation (54), the bubble is expected to break up into smaller ones until it reaches
its critical diameter proposed by Hinze (ref. 10) and Sevik and Park (ref. 11) (see the appendix), and the

flow would be a dispersed flow unless the void fraction exceeds its critical value for dispersed to slug flow

transition. Normally the criterion for bubbly to slug flow transition is given by the average critical void

fraction at a cross section. For the present inlet geometry where the nozzle is located at the center of

geometry, the bubbles are concentrated in the central region of the tube. For this case the transitional

void fraction may become less than the void fraction averaged over the cross section. With bubble

coalescence and breakup processes included, it is thus not possible to obtain a proper critical void fraction

from the scaling analysis. What is anticipated is that with bubble breakup, bubbles would evenly be

redistributed throughout the cross section and that the critical value of the void fraction would be close

to the cross section average value. Based on the measurements of bubble size distributions at the inlet

and outlet locations of the tube, Colin et al. (ref. 12) reported that the higher liquid turbulence levels in a

large tube may enhance bubble coalescence more than they cause bubble breakup. It was also suggested

that the absence of eddy shedding from the back of bubble could enhance coalescence and suppress the

breakup. This phenomenon, however, needs more detailed study.

15



For current gas flow rates, bubble coalescence always occurs irrespective of the value of void fraction.

When bubble breakup occurs due to strong liquid turbulence (under the condition from eq. (54)), dis-

persed flow would remain dispersed, but with finer bubbles, while slug flow would either remain as a slug

flow, with distorted large bubbles, or would transform into churn flow with the breakdown of large
bubbles.

When the bubble breakup process does not occur, we have the condition

We < 870
Q_QQ_fgRe 1/5

(55)

Under this condition, unless Db/D << 1, that is, unless

>>0.4,
(56)

dispersed flow would become slug flow under the condition of equation (52) and slug flow would become

annular flow under the condition of equation (53).

INERTIAL DRAG CASE

7.1 Force Balance and Departure Size

Consider the balance between the gas momentum flux and the inertial drag during bubble formation.

Equating these two forces from equation (36), we have

2 2

Qg .-- 1 peff qg (57)

From the above relation, the bubble diameter is

D b -- 1 /Peff/l/2dN (58)

As peff/pg : 1 + CM (pf/pg) from equation (6),

16



Db
D 1 I Pfl 1/2dN

2_3 I+CM-- pg) -ff
(59)

It is seen from equation (59) that the nozzle diameter is important in determining the bubble size. If

1 + C M Pf/1/2 dNpg) D

(60)

then Db/D < 1 and the flow would be dispersed flow unless coalescence occurs. Or, if

Ii + C M pf]I/2 dN
-- -- ___2 V_--

pg) D

(61)

so that Db/D > 1, then slug flow is expected, again unless coalescence occurs.

7.2 Bubble Coalescence in the Nozzle Region

Applying equations (29) and (59), the condition of bubble coalescence is

(62)

The inertial drag becomes important over liquid viscous drag under the condition

Qg A > 0.025 C D __pf (63)

Qf AN Pg

(This will be shown in section 7.4.) For C M = 11/16 and C D >_ 1.5 (see "Comparisons and Discussions"

section), meeting this condition implies that equation (62) is satisfied and therefore that bubble

coalescence always occurs.
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7.3BreakupDueto Liquid Turbulence

From equations (34) and (59), the condition for bubble breakup is given as

We > 1205 Rel/S

(1 + CM Pf/1/2pg)

(64)

When bubble breakup does not occur, the condition

We < #/-11205 Ret/S

[1+ CM PgJpf]l/2

(65)

must be satisfied. For the above condition, a slug flow is expected under the condition of equation (60)

and an annular flow under the condition of equation (61). From equation (59), Db/D << 1 for

1 + CM pf]l/2 dN
_ << 2 _3-

pg) D

(66)

and a dispersed flow is expected under this condition even though bubble coalescence occurs.

When both bubble coalescence and bubble breakup occur, we expect a dispersed flow with finer bub-

bles under the condition of equation (60); a slug flow with distorted large bubbles or a churn flow with

disrupted large bubbles is expected under the condition of equation (61).

7.4 Comparison of Liquid Viscous Drag to Inertial Drag

Now consider the criterion under which the inertial drag becomes more important than the liquid

viscous drag. From equation (36), by comparing the magnitude of each term, the inertial drag becomes

important when

2

CD 1 Qg

-_ PfU_ffAeff < -_ Peff _rD2b

(67)

Substituting Ueff from equation (38) and Aef f = (r/4)D2b into equation (67) and rearranging terms

gives

18



cololl14 f/ /2121/ /2 (68)

Substituting the proper expression for Db/D in each side of equation (68), that is, Db/D from equa-

tion (51) to the left-hand side and Db/D from equation (61) to the right-hand side of the above inequal-

ity and with Peg = (Pg + CMPf)' we have the following condition for the importance of the inertial drag
over the liquid drag

Qg A > 0.025 C D _pf (63)

Qf AN Pg

The liquid viscous drag becomes important when

Qg A __ 0.025 c D _pf (69)

Qf AN Pg

Prior to this analysis, it was assumed that (Qf/Q.) (AN/A) < 1 (eq. (13)). This condition restricts
the liquid flow rate in order to analyze the problem without bubble breakup. When the hquld flow rate

is high enough to satisfy the bubble breakup condition (eq. (54)), equation (13) may not be satisfied.

Since the explicit condition is given above for the importance of liquid viscous drag (eq. (69)) and since

equation (54) supersedes equation (13), equation (13) is no longer a necessary condition.

8.1 Determination of Jet Velocity

In this case the net forward kinetic force of the gas is large enough to overcome the interfacial tension

force and to by itself cause detachment. To be more precise, the kinetic force is sufficient to push the gas
bubble forward before the bubble becomes large. As a result, the gas flow is no longer a stream of bub-

bles. It is instead either a jet-like flow due to strong bubble coalescence or a jet flow. The occurrence of

bubble coalescence can be seen easily from equation (27), where the _bubble coalescence condition is identi-

cally satisfied when the bubble velocity for this case, U b = Qg/IrD b , is substituted.

In jet flow the interfacial friction between the gas and liquid becomes important, while in jet-like flow

the resisting force against the gas flow would be the total drag for the bubble motion through the liquid

neglecting bubble coalescence. The second case will be addressed first.

For high gas flow rates, the bubble shape would be deformed into a nonspherical shape. But for

simplicity, assuming a spherical bubble shape, from equation (36), we may balance the gas kinetic force

with the liquid viscous drag as
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2

Qg = CD. 1 Pf U_ff Aeff
Pg

(70)

Since bubble diameter is expected to be comparable with nozzle diameter for high gas flow rates,

<<1

Qg

(71)

With this condition, equation (70) reduces to

(72)

For high velocity bubble motion and if the bubbles are free of surfa_ce-active contaminants, C D _ 1.0 for

Re > 30 Thus even though p/p >> 1 for gas-liquid two-phase flow, Db/D < 1 is expected. Since theB-- • f g
gas flow appears as a jet-like flow due to strong bubble coalescence, the bubble diameter should be
indicative of the jet diameter, and the flow regime would very much depend on the jet flow character-

istics. For normal gravity there exist a few correlations for the velocity below which the jet would not

form. Smith and Moss (ref. 13) found that for liquids injected into gases, the jetting velocity, U j, could

be given by

(73)

where Kj was determined experimentally to be between 2.0 and 3.0, and Pd is the density of the
dispersed phase. Scheele and Meister (ref. 14) have shown that for a flat (or average) velocity profile for

the dispersed phase, the jetting velocity is given by the equation

[PddN[. dF)_

(74)

where d F is the diameter of the drop which would form at the nozzle velocity Uj if a jet did not form.
No explicit relation is available for the gas-liquid system which may render a more quantitative criterion

than the condition of equation (73).
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8.2 Breakup Due to Kelvin-Helmholtz Instability

In a jet flow, disturbances appear on the jet surface and move at the velocity of interface. When the
most unstable disturbance grows, it leads to the disruption of the jet, breaking it up into very fine

bubbles in the case of gas jet flow or fine drops in the liquid jet flow case. It is noted by Ostrach and

Koestel (ref. 15) that from the Kelvin-Helmholtz stability criterion, annular two-phase flow in a zero-
gravity environment is unstable to disturbances of all wavelengths if the effect of surface tension is

neglected, no matter how small the velocity difference or shear of the two fluids. In an internal flow, one

part of the fluid layer can produce disturbances to another part and these disturbances may accumulate

in varied nonlinear ways. Thus the question is raised as to whether conventional linear stability analyses

such as the Kelvin-Helmholtz stability criterion have any meaning for this type of internal flow.

Usually linear stability theory is used to predict jet length from jet inception to disruption. Meister

and Scheele (ref. 16) showed that the jet length, L j, can be expressed as

Lj = Kj __ (75)

where Kj is a constant, a is the disturbance growth rate, U I is the interfacial velocity, a N is the jet
radius at the nozzle exit, and _o is the initial amplitude of the most unstable disturbances. In the case
of liquid jets in gas, the gas phase exerts negligible friction on the liquid jet and disturbances at the

interface move at the same speed as the liquid, and the jet forms easily. However, in the liquid-liquid and

gas-liquid systems, the interfacial friction is significant and the interfacial velocity is low enough that the
most unstable disturbance amplifies to the nozzle radius within a short distance from the nozzle exit.

When the nozzle diameter is very small, the jet radius, aN, is also very small. From equation (75), as

ln(aN/_O ) << 1, either the jet length would be very small or else there would be no jet formation at
nozzle exit. If no jet forms there would be a mist flow of very fine bubbles and drops due to the

disruption and atomization of the jet; this was observed by Leibson et al. (ref. 17) and Hayworth and

Treybal (ref. 18).

In the present analysis, it is speculated that the length over which the jet persists can be estimated

by balancing the interfacial friction between gas jet and liquid flow with the gas kinetic force. Using

equation (36), with the liquid viscous drag regarded as the interracial drag, the balance of interfacial drag

and gas kinetic force is expressed as

2

pg Q.__g= Cfi. 1 pg(Ug- Uf)2Ai
AN 2

(76)

where Cfi is the interracial drag coefficient replacing the liquid drag coefficient CD, and A i is the inter-

facial area replacing the effective area Aeff. A i can be expressed as

Ai = rdNL A (77)

where L A is the characteristic length of annular flow regime. Substituting equation (77) into equa-

tion (76) and rearranging, we have
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LA
1 1 1

dN
(78)

For very high gas flow rate, i.e. for

we have

Qf AN_ m << i (79)

1 dN (80)LA --
2 Cfi

For LA/D >> 1, that is, for

LA 1 dN
= >> 1 (81)

D 2Cfi D

the jet flow is expected to extend over a substantial length in a pipe until it disrupts. When the nozzle

(or jet) diameter approaches the pipe diameter, the jet flow would continue as annular flow until it
changes into annular/mist flow due to the growth of the most unstable disturbances, although the liquid

film in this case is expected to be substantially thicker than that in the conventional annular two-phase

flow under normal gravity. This can also be inferred from the results of Lee and Chan's linear stability

analysis of cylindrical liquid sheets (ref. 19), where the cylindrical liquid jet structure is found to change

from stable to wavy, wavy mist, and mist flow structure depending on the relative velocity of the gas and

liquid phases. Since equation (81) is satisfied for low values of Cfi and larger values of dN/D , the
existence of annular flow structure is thus possible for very high relative velocities between the phases and

for relatively larger nozzle diameter. In the T-shape two-phase mixer where the pipe diameter for gas

phase is large, we can expect the appearance of annular flow. In some two-phase flow high gas flow

experiments where gas is injected through multiple nozzles (or multiple holes) around the pipe periphery,
the merger of jet flow from each hole would result in an annular flow structure. In any case, for high gas

flow rates the annular flow is expected to change into wavy annular, annular mist, or mist flow far

downstream due to the growth of the most unstable disturbances at the interfaces.

When LA/D _ 1, i.e., when the jet length is not large, the jet would break down within a short

distance from the nozzle exit and would appear as mist or fog, as is indicated from equation (75).

To determine the jet length L A in equation (80), it is essential to first determine the interracial

friction coefficient C 5. A number of relationships for the interfacial friction coefficient under normal
gravity have been proposed (refs. 20 to 22). However, until the roles of such mechanisms as droplet

entrainment flux, interfacial shear stress and turbulence in microgravity are better understood in two-

phase flow, there will not be complete confidence in such correlations.
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Whentheliquid flow rate is high enough such that equation (79) is not satisfied, i.e., for

Qf AN < 1 (82)

Q, A

the jet length, LA, calculated from equation (80) is expected to be very large. This can be explained
physically. When the liquid phase velocity is comparable to the gas jet velocity, the disturbances move

almost as fast as the liquid, and the jet structure can be sustained for a substantial distance downstream
of the nozzle.

8.3 Breakup Due to Liquid Turbulence

Due to the very high level of turbulent fluctuations of liquid flow and the mutual influence of distur-

bances on each phase as mentioned earlier, a jet meeting the conditions of equation (82) may be disrupted

or changed in some way. Let us look at the possible disruption of gas jet due to strong liquid turbulence.

If the kinetic pressure of liquid turbulence is dominant over the capillary pressure of gas jet, i.e., when

f 2 2a (83a)
pfVf > --dN

or

We SSX el/S/ /-1(83b)

the breakdown of gas jet structure is expected and the resulting flow would appear as dispersed or transi-

tional bubbly-slug flow. When the turbulent fluctuation is not strong enough to disrupt the jet flow, i.e.,
when

(84)

we expect strong waviness of jet flow or pinchoff of jet structure due both to strong turbulent fluctuations
and to the growth of the most unstable disturbances. The resulting flow pattern may appear as wavy

annular or more likely transitional annular-slug flow structure.

9.COMPARISONS AND DISCUSSION

A summary of the flow regime transition criteria for gas-liquid two-phase flows described is given in

table I. (A more detailed summary, providing an outline of the reasoning, is given in tables II and III.)
The flow regime transitions derived herein are based on the dominant physical mechanisms at given
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conditions in a microgravity environment. Due to the assumptions and simplifications made in the

derivations, a validation against experimental data is required.

Recently some experimental data for the gas-liquid two-phase flow in microgravity has been pub-

lished. A direct comparison with this analysis is not possible because the inlet configurations (mixers)

used in these experiments involve injecting the gas through multiple holes around the periphery of the

pipe wall. However, a comparison can be made by adjusting the parameters of the analysis which are

affected by the inlet geometry. The experimental data used in these comparisons are the air-water data

of Lee (ref. 23), Dukler et al. (ref. 24), and Colin et al. (ref. 12).

Numerous two-dimensional flow regime maps for two-phase flow, both empirically and experimentally

based, have been reported in the literature over the last several decades. Empirical maps prepared for
one set of conditions are not necessarily valid for other geometries and properties. Theoretical flow

regime maps have demonstrated some predictive success, but still remain to be proved. There thus are

no generally accepted criteria for transition between the various flow regimes.

It is noted from table I that the physical conditions and transition criteria include geometric

properties as well as physical properties. In addition, under the same physical condition, different
transition criteria predict different flow regimes for the same dimensionless parametric values. This

implies that the current flow regime maps based on two-dimensional coordinates may not be adequate to

depict the whole physical flow regime and that some important parameters or physical mechanisms

described by such parameters may be overlooked in such a map.

There has been a tendency to use the existing 1-g flow regime transition criteria to predict flow

regimes in a microgravity environment. These criteria have yet to be demonstrated. Keeping these
things in mind, comparisons are made with recently published experimental data in flow regime maps,

prepared separately for each set of data. Superficial liquid and vapor velocities are chosen as coordinates

to avoid tedious calculations to convert the original data. For comparison purposes only, the following

adjustments are made to determine the values of some related parameters obtained from the analysis.

9.1 Determination of Drag Coefficient, C D

The behavior of fluid spheres such as drops and bubbles differs from solid spheres primarily due to
internal circulation and deformation. Internal circulation delays the onset of flow separation and wake

formation in the external flow and decreases the drag exerted by the external flow. Internal circulation is

negligible for high values of viscosity ratio, _ = Pd/#c where the subscripts d and c represent

dispersed and continuous phase, respectively. Surface active contaminants can also eliminate the internal

circulation, thereby significantly increasing the drag. Systems which exhibit high interfacial tension such

as air/water and liquid metal/air are most subject to this effect. When a fluid sphere exhibits little
internal circulation either because of high viscosity ratio or because of surface contamination, the external

flow is indistinguishable from that around a solid sphere at the same Re B.

Significant deformation from the spherical shape occurs in fluid spheres for large Re B (e.g., for drops

and bubbles rising or falling freely with Re B > 600); this deformation tends to increase the drag. The
presence of the walls also tends to cause deformation of a fluid sphere for values of Db/D > 0.3 and as

with solid spheres, the drag force tends to increase as Db/D increases, though the effect is less than for a

solid sphere under corresponding conditions.
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Considering that the presence of surface-active contaminants is almost inevitable for every system,

and that deformation from a spherical shape is expected for large ReB, there is a significant differ-

ence in the value of CD between the uncontaminated, spherical bubble and contaminated, deformed

bubble. However, there appears to be insufficient data available regarding C D of a bubble in a bounded

regime as to allow a useful quantitative generalization to be drawn. Thus in the first category of physical

condition where Re B is expected large, the value of C D is assumed to be that of a solid sphere at the

same Re B. One thing to be noted is that from equation (19), the value of C D depends on the bubble

diameter D b which in turn depends on the value of CD, thus some iterative calculations are needed to
determine both values. In the second category of physical condition, as the size of bubble is determined

by the growth mechanism where the bubble motion is supposed to be slow, C D is assumed to be 18.3;

this is the value given by Clift et al. (ref. 9) for Re B = 1.0 and _ = 0.

9.2 Virtual Mass Coefficient, C M

In the stationary system of bubble formation, some researchers have used the value of 11/16 for C M

(refs. 4, 27, and 28) while others have used 1/2 (refs. 29 and 30). Recently, Kim (ref. 3) analytically
studied the added mass coefficient of a fluid sphere of diameter D b moving with velocity Uf through a

continuous liquid phase in square cross section channels for both coflowing and cross-flowing cases. He

showed that C M varies only with the diameter ratio Db/D where D is the hydraulic diameter of
the channel. According to his calculations, 0 5 < C.. < 1 0 _Por0 < D-/_) < 0 9 Since from equation

• -- NI-- " O p_ " "

(59) D b and CM depend on each other, an iterative calculation would also be needed here. To avoid
this iterative calculation, the value of 11/16 is adopted for C M.

9.3 Interfacial Friction Coefficient, Cfi

As was mentioned earlier, there have been a number of reported relationships for Cfi under normal

gravity. However, as it is not clear whether these formulations are valid in the present situation, and

considering that the gas jet is highly turbulent, Cfi is taken to be 0.005, which is the value of friction
factor for the turbulent flow in rough pipes.

9.4 Other Parameters

While a single nozzle configuration is considered in the present analysis, experiments conducted to

date have used multiple nozzles. Thus the volumetric flow rate of gas for single nozzle, Qg, is expressed

as Qg = Qg/n, where Q_'g is the total volumetric flow rate of gas for the system and n is the number
of nozzles. In addition, the multiple nozzle systems are very close to cross-flowing systems, and as a

result the coefficient for surface tension force f(_) in equation (lc) would differ from the value of 1,

which is appropriate for a coflowing system. According to Kim (ref. 3), in a cross-flowing system the

component of f(_) in the liquid flowing direction is given as f(_) = sin_/_. His calculation shows that
the bubbles in a cross-flowing system detach at _ = 45 ° .-_ 50 ° giving f(_) _ 0.9. This value is used

for multiple nozzle systems.

9.5 Comparison and Discussion

Since each physical condition represents a dominant physical mechanism, for demarcation purposes

two vertical lines are drawn in figures 3 to 5, one at a value of Ug which satisfies the relation
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pg (Q2g/AN)= 0.1 alrdNf(_o ) (for the physical condition pg (Q2g/AN) << a_dNf(_o)), and the other at

pg (Q2/AN) = 10 a_rdNf(_o ) (for pg (Q2g/AN) > alrdNf(_)). The appropriateness of these demarca-
tions needs to be verified. The demarcation thus given divides the flow regime into three regions: the

lef_hand side region represents the region where first physical condition applies, an intermediate region

for the second physical condition, and the right-hand side region for the third physical condition.

Figure 3 compares prediction from the present analysis with Dukler et al.'s drop tower data (ref. 24).

(Comparisons with their learjet data was not considered because the mixer configuration used in those

experiments differed significantly from the one used in this analysis. In the experiments liquid is injected

through holes around the periphery of the pipe while gas is flowing through the pipe.)

In the region of first physical condition, the transition from dispersed to slug flow is obtained from

equation (21), with C D values based on the bubble Reynolds number Re B. At the dispersed-slug flow
transition, the bubble size is expected to be of the same order as the pipe diameter, D b _ D. Based on

the pipe diameterl Re B from experimental data lies in the range 100 _ Re B _< 1000 and values of CD
for these Reynolds numbers are 0.55 <_ C D < 1.0 (ref. 9). The transition lines are shown for low (0.55)

and high (1.0) values of CD. Comparison shows good agreement with the experimental data except for

one slug flow point that is predicted to be dispersed flow.

In the region of second physical condition, the transition line _]Qf/Qg = 1.10 is given empirically

by Dukler et al. for the dispersed-slug flow transition; the transition line _/Qf/Qg = 2.0 is from the

present analysis. The transition line for the present analysis is derived as follows: Under the given

experimental condition the bubble breakup condition equation (54) is not satisfied and the dispersed-slug

transition criterion needs to be determined from the inequality condition. _/Qf/Qg >> 0.4 from

equation (56). Representing equation (56) as _Qf/Qg _> 4.0, and correcting the gas flow rate Qg for

the number of nozzles (four) yields the relation (Qf/Qg >_ 2.0, which is shown in the figure. This

transition criterion occurs at somewhat higher value of _/Qf/Qg than the empirical value. This is

probably due to a lack of proper accounting for the bubble formation and interaction phenomena of

multiple nozzle system by the simple algebraic treatment of an inequality transition criterion. But, as
will be mentioned later, the slug-dispersed flow transition in this region is still a big issue to be resolved.

The slug-annular flow transition is :obtained from the condition of equation (52). In this case the gas
flow rate is not modified by the number of nozzles. The reason for this is that in the dispersed-slug flow

transition, the bubble size at detachment (which primarily depends on the gas flow rate at the nozzle)

occurs as a result of the coalescence of big bubbles either in single nozzle or multiple nozzle systems.

Thus it is the overall gas flow rate, rather than the gas flow rate at each nozzle, that determines the

transition. If the number of nozzles is incorporated, the transition line for the slug-annular flow

transition is somewhat lowered; this does not contradict the current comparison. However, no available

data exists to clarify this point.

Figure 4 shows the comparison of the prediction with the KC-135 experiment data of Colin et al.

(ref. 12). In their experiment, air is injected through eight holes of 1 mm diameter located uniformly
around the periphery of a venturi-shaped section with a minimum diameter of 2 cm. The divergent
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sectionlength is 25 cm and the test section diameter is 4 cm. To study the inlet effect the minimum

venturi-section diameter was used, because the liquid velocity there significantly differs from that in the

test section. In the region of first physical condition, the transition for dispersed-slug flow is obtained

using the representative value of C D -- 0.5 for a value of Re B on the order of 104. As can be seen the

comparison shows very good agreement. In the region of second physical condition, the transition for

dispersed-slug flow is given empirically by the authors as _]Qf/Qg = 1.79. For comparison, Dukler et

al2s transition criterion and that from the present analysis are also shown. (The criterion from the

present analysis is obtained similarly to the one in fig. 3 except that the number of nozzles is 8 instead of

4.) Also shown is the slug-annular transition from the present analysis. Colin et al.'s transition criterion

lies at a somewhat higher value of _Qf/Qg than that of Dukler et ai. and the present criterion lies in

between them. Colin et al. explained Dukler et al.'s lower value as arising from suppressed bubble
coalescence due to the reduced turbulence level in the smaller tube Dukler et al. used. Considering that

the data of both experiments in the second category of physical condition are subject to bubble coales-

cence (under the criterion of eq. (55)), two more reasons seem to be plausible for this difference; first, in
the Colin et al.'s experiment, the retardation of liquid velocity from the venturi section to the test section

may jam together bubbles near the entrance region of the test section and thereby enhance bubble coales-
cence. Second, due to the relatively short length-to-diameter ratio in Dukler et al.'s experiment, the

coalescence of bubbles may not be complete and more coalescence might be expected if the tube were

longer. This means that the flow regime may not be fully established at the test section exit. More

detailed study of these issues is needed in the future.

Figure 5 shows comparison of the present prediction with Lee's adiabatic air-water data from

KC-135 experiments. Since details are not given regarding the configuration of the inlet geometry, a

direct comparison is not possible. But for comparison purposes, the nozzle diameter is arbitrarily
assumed to be 1 mm. This arbitrariness of choosing nozzle diameter surely influences the demarcation of

physical conditions and the relevant transition criteria under the given physical condition. The primary

reason for making this comparison is because his experiment is the only one that contains annular flow

regime data against which the comparison of the present prediction for the annular flow regime is pos-

sible. The demarcation of the physical condition in the figure is shown for d N = 1 mm and f(_) -- 0.9.

In the region of first physical condition, the value of CD is taken to be 0.55; this value is basically a
constant for solid spheres with Reynolds number on the order of 103 . Two data points available in this

region show good agreement. But it is suspicious because their locations are subject to nozzle diameter.
In the region of third physical condition, annular flow regime data agrees well with the prediction. The

arbitrarily chosen nozzle diameter for this data affects only the value of physical condition and not the

liquid superficial velocity (or the ratio of the flow rate); the annular data points nearest the demarcation

line would still be predicted to be annular even if they fell in the intermediate range of physical condition.

Some wavy annular flow pattern was reported. This was predicted as a possibility in sufficiently long

pipes under the third physical condition in the analysis.

2

In figure 6 are all the above experimental data plotted in a versus [pg(Qg/AN)] /

aTrdNf (_) map. The abscissa, which is a dimensionless physical condition, is analogous to the Weber

number in terms of average gas nozzle velocity and nozzle diameter. The main purpose for this is to see

if any definite trend among data exist in terms of the two most important dimensionless parameters

adopted herein. First of all, it is seen from the figure that the data are grouped into three distinctive

regions which are defined by the two demarcation lines. All the data (except one slug flow data from

the left-hand side of demarcation, [pg(Q2/AN) ]/ardNf (_) = 0.1, represent dispersedColin et al.) on

flow. It is interesting to note at this point that according to equation (26), slug flow is not possible
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unlesstheliquid flow rate is significantly small; that condition may imply an unrealistically small flow

rate in an actual experiment. All of Lee's data which falls on the right-hand side of the demarcation,

[pg(Q2g/AN) ] / o_dNf(_ ) = 10, represents annular flow. Colin et al's two slug flow data in this region

may be suspect because the gas flow rates for these points are unusually high, more than twice as large as
the rates for the largest value of their other slug flow data. In the intermediate region between the

demarcations, dispersed and slug flow data exist together and the transitions for dispersed to slug flow

are given from Colin et al., Dukler et al., and the present prediction (nozzle number, n = 8). Also shown

is the slug-annular flow transition criterion from the present analysis. It seems that the demarcation by

physical condition could be used to establish the sole existence of dispersed or annular flow structure. In

the intermediate region, the transition criterion for dispersed to slug flow could be used to predict critical
void fraction. Since the data are not extensive and some may doubt the quality of data, it is dangerous

to draw any conclusion. However, the above flow regime map based on the volumetric flow ratio and

dimensionless physical condition appears to be instructive and could be used to better predict the two-

phase flow regime in microgravity, including the effect of inlet geometry.

The comparisons made above are generally satisfactory even though rough estimations are made for

some physical parameters. More extensive data are required to properly define the demarcations for each

physical condition and transition criteria in each category of physical condition.

CONCLUSIONS

An attempt has been made to predict the gas-liquid two-phase flow regime in a pipe with simple inlet

geometry in microgravity through a scaling analysis based on the dominant physical mechanisms.

The present analysis has clarified much of the physics involved in such problems, especially the effect

of inlet geometry on the flow regime transition.

Comparisons of the predictions with the existing experimental data show good agreement. However,

further work is required to better define some physical parameters.

The present analysis is capable of being applied to other configurations and seems to be a good first

step in resolving the unknowns that have confronted researchers on this subject since its inception: How

are phases distributed spatially in microgravity and what is the effect of inlet geometry on this process?

28



APPENDIX

Kolmogrov(ref. 29)andHinze(ref. 10)showedthat the splitting of a dropor bubblein turbulent
flowwill dependupona critical Webernumberof liquid flow. Hinzecorrelatedthe maximumor critical
bubbleor dropdiameterwhich is stable under turbulent fluctuations as

(A-l)

where e is the rate of energy dissipation per unit mass and K is a constant related to the critical

Weber number. Hinze determined K = 0.725 based on the experimental data of Clay

(ref. 30) for droplet breakup in a turbulent flow between coaxially rotating cylinders. Later Sevik and

Park (ref. 11) theoretically predicted K - 1.14 by considering the resonance of the liquid drops and gas
bubbles. Their prediction shows remarkable agreement with their experimental value of K -- 1.15, which

was obtained from the breakup of air bubbles in a turbulent water jet, by setting a characteristic

frequency of the turbulence equal to bubble's resonant frequency. One thing that should be noted is that

the relationship, equation (A-l), is based on the condition of noncoalescence of bubbles which is possible

only at very low concentration of air bubbles. Adopting the value for K -- 1.14 and following Levich

(ref. 8), the rate of energy dissipation per unit mass can be expressed

2f 3 (A-2)
ff_--- _Vf

Substituting equation (A-2) into equation (A-l) and predicting the friction coefficient f from the

Blasius equation, we obtain

Dbc : 2.96 We-3/SRe 2/25 (A-3)
D

Under the bubble breakup conditions, equations (54) and (64), which are possible for very high value of

Qf or Re, it can be shown that Dbc/D < 1 in equation (A-3) through comparison of equation (A-3)

with equations (54) and (64). This indicates that whenever bubble breakup occurs, the critical bubble is
a small, dispersed bubble and, without coalescence, the flow regime would be dispersed flow.

Taitel et al. (ref. 31) expressed the energy dissipation rate per unit mass e and the friction factor f in

terms of the mixture velocity and liquid kinematic viscosity for the transition criterion between bubble

and slug flow regime. However, no physical explanation was given to support this formulation.
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TABLE III.--SUMMARY OF THE ANALYSIS FOR HIGH GAS FLOW RATES. (NUMBERS AT LEFT

REFER TO APPLICABLE SECTIONS OF THE TEXT.)

4.3

Physical condition Gas/liquid flow ratio; mechanism Jet breakup? Flow regime

of possible jet instability

8.2 Mist

8.1, 8.2 8.2

2

Ps--Qs > ¢Ird N
A N

Gas > Surface

inertia tension

Qf AN

Qs A

Kelvin-Helmholtz

instability

8.1, 8.2, 8.3

Qr AN _ 1;

Qs A

Liquid turbulence

8.2

1 dN _ 1 --* Yes

2C_ D

I dN
__ _ I"+No

2C_ D

8.3 W.._._eRe_X/sdN
- 85.1 D

> 1 --* Yes

8.3 We Re-X/s dN__ _ < I "+ No

85.1 D

8.2 Annular/mist

8.3 Dispersed or

dispersed/slug

8.3 Wavy annular

or annular/slug
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